Article 3217

Title of the article

AN ANALYSIS OF GRAY-SCALE IMAGES AND COLOR TEXTURES BASED ON STOCHASTIC
GEOMETRY AND FUNCTIONAL ANALYSIS 

Authors

Fedotov Nikolay Gavrilovich, Doctor of engineering sciences, professor, head of sub-department of economic cybernetics, Penza State University (40 Krasnaya street, Penza, Russia), nikolayfedotov@mail.ru
Goldueva Dar'ya Alekseevna, Candidate of engineering sciences, associate professor, sub-department of economic cybernetics, Penza State University (40 Krasnaya street, Penza, Russia), vrem0@yandex.ru
Mokshanina Mariya Alekseevna, Senior lecturer, sub-department of physics and mathematics, Penza State Agrarian University (30 Botanicheskaya street, Penza, Russia), nikolayfedotov@mail.ru

Index UDK

681.39; 007.001.362

DOI

10.21685/2072-3059-2017-2-3

Abstract

Background. Most of the existing methods of half-tone or color object analysis generally presuppose prior simplification of an object to be analyzed involving image binarization. A side effect of image binarization is a loss of essential elements of useful information about the object. The paper suggests an alternative approach towards
half-tone image and colored texture analysis and recognition based on stochastic geometry and functional analysis.
Materials and methods. The proposed method for half-tone image and colored texture analysis and recognition makes it possible to form both the recognition features to describe geometric image particularities and the recognition features to reflect image color or brightness particularities.
Results. According to the suggested method recognition features can be created without analytical experts by means of automatic comuter generation followed feature space minimization, which is needed for the most reliable object recognition. The method allows to get recognition features invariant both to shift and rotation and to linear transformations of initial images, which is very important for the most of image analysis and recognition tasks.
Conclusions. The experimental results prove the effectiveness of the method suggested both for half-tone image and colored texture processing tasks.

Key words

image recognition, half-tone image, color texture, tracetransformation, triple feature, stochastic geometry

Download PDF
References

1. Fedotov N. G. Metody stokhasticheskoy geometrii v raspoznavanii obrazov [Stochastic geometry methods in image recognition]. Moscow: Radio i svyaz', 1990, 144 p.
2. Fedotov N. G. Teoriya priznakov raspoznavaniya obrazov na osnove stokhasticheskoy geometrii i funktsional'nogo analiza [The theory of image recognition features on the basis of stochastic geometry and functional analysis]. Moscow: Fizmatlit, 2009, 304 p.
3. Kendall W. S., Molchanov Ilya New Perspectives in Stochastic Geometry. Oxford, UK: Oxford University Press, January, 2010, 120 p.
4. Kadyrov A. A., Saveleva M. V., Fedotov N. G. Third int. conf. on automation, robotics and computer vision (ICARCV’94). Singapore, 1994, pp. 134–146.
5. Fedotov N. G., Kadyrov A. A. In Proc. of 5th International Workshop on Digital In Processing and Computer Graphics, Proc. International Society for Optical Engineering (SPIE). 1995, vol. 2363, pp. 256–261.
6. Fedotov N. G., Shulga L. A. WSCG’2000 Conference Proceedings. Czech Republic: University of West Bohemia, 2000, vol. 1 (2), pp. 373–380.
7. Kadyrov A. A., Fedotov N. G. Advances in Mathematical Theory and Applications. 1995, vol. 5, no. 4, pp. 546–556.
8. Fedotov N. G., Kol'chugin A. S., Smol'kin O. A., Moiseev A. V., Romanov S. V. Izmeritel'naya tekhnika [Measuring technology]. 2008, no. 2, pp. 56–61.
9. Vidal M., Amigo J. M. Chemometrics and Intelligent Laboratory Systems. 2012, vol. 117, 1. pp. 138–148.
10. Fedotov N. G., Nikiforova T. V. Izmeritel'naya tekhnika [ ]. 2002, no. 12, pp. 27–31.
11. Fedotov N. G., Shulga L. A., Roy A. V. Proc. Int. Conf. Pattern Recognition and Image Analysis. PRIA-7-2004. 2004, vol. 2, pp. 473–475.
12. Shin B.-S., Cha E.-Y., Kim K.-B., Cho K.-W., Klette R., Young W. W. 3rd International Conference on Bio-Inspired Computing: Theories and Applications. BICTA, 2008, pp. 97–102.
13. Fooprateepsiri R., Kurutach W. Proc. of the IADIS Int. Conf. Intelligent Systems and Agents 2010, Proc. of the IADIS European Conference on Data Mining 2010, Part of the MCCSIS, 2010, pp. 83–90.
14. Fedotov N. G., Shulga L. A., Kol’chugin A. S., Smol’kin O. A., Romanov S. V. Proc. Of the 8th Int. Conf. on Pattern Recognition and Image Analysis (PRIA-8-2007). Yoshkar- Ola, Russia, 2007, vol. 1, pp. 299–300.
15. Fedotov N. G., Shulga L. A. In Proc. of the 4th International Workshop on Pattern Recognition in Information Systems, PRIS’2004. Porto, Portugal, 2004, pp. 169–175.
16. Fedotov N. G., Mokshanina D. A., Romanov S. V. Matematicheskie metody raspoznavaniya obrazov (MMRO-14): tr. Vseros. konf. [Mathematical methods of image recognition: proceedings of the All-Russian conference]. Moscow: MAKS Press, 2009,pp. 611–613.
17. Fedotov N. G., Mokshanina D. A. Pattern Recognition and Image Analysis. 2010, vol. 20, no. 4, pp. 551–556.

 

Дата создания: 07.11.2017 10:41
Дата обновления: 07.11.2017 14:11